Predicting real-time coagulant dosage in water treatment by artificial neural networks and adaptive network-based fuzzy inference system
نویسندگان
چکیده
Coagulation is an important component of water treatment. Determining the optimal coagulant dosage is vital, as insufficient dosage will result in unqualified water quality. Traditionally, jar tests and operators’ own experience are used to determine the optimum coagulant dosage. However, jar tests are time-consuming and less adaptive to changes in raw water quality in real time. When an unusual condition occurs, such as a heavy rain, the storm water brings high turbidity to water source, and the treated effluent quality may be inferior to drinking water quality standards, because the conventional operation method can be hardly in time to adjust to the proper dosage. An optimal modeling can be used to overcome these limitations. In this paper, artificial neural network (ANN) and adaptive networkbased fuzzy inference system (ANFIS) models were used to model poly aluminum chloride (PAC) dosing of northern Taiwan’s surface water. Each of themwas built based on 819 sets of process-controlled data. The performance of the models was found to be sufficient. Two simulation tools, ANN and ANFIS, were developed that enabled operators to obtain real-time PAC dosage more easily. The self-predicting model of ANFIS is better than ANN for PAC dosage predictions. & 2008 Elsevier Ltd. All rights reserved.
منابع مشابه
The use of wavelet - artificial neural network and adaptive neuro fuzzy inference system models to predict monthly precipitation
Precipitation forecasting due to its random nature in space and time always faced with many problems and this uncertainty reduces the validity of the forecasting model. Nowadays nonlinear networks as intelligent systems to predict such complex phenomena are widely used. One of the methods that have been considered in recent years in the fields of hydrology is use of wavelet transform as a moder...
متن کاملAdaptive Network-based Fuzzy Inference System-Genetic Algorithm Models for Prediction Groundwater Quality Indices: a GIS-based Analysis
The prediction of groundwater quality is very important for the management of water resources and environmental activities. The present study has integrated a number of methods such as Geographic Information Systems (GIS) and Artificial Intelligence (AI) methodologies to predict groundwater quality in Kerman plain (including HCO3-, concentrations and Electrical Conductivity (EC) of groundwater)...
متن کاملEvaluation of the Efficiency of the Adaptive Neuro Fuzzy Inference System (ANFIS) in the Modeling of the Ionosphere Total Electron Content Time Series Case Study: Tehran Permanent GPS Station
Global positioning system (GPS) measurements provide accurate and continuous 3-dimensional position, velocity and time data anywhere on or above the surface of the earth, anytime, and in all weather conditions. However, the predominant ranging error source for GPS signals is an ionospheric error. The ionosphere is the region of the atmosphere from about 60 km to more than 1500 km above the eart...
متن کاملModeling of streamflow- suspended sediment load relationship by adaptive neuro-fuzzy and artificial neural network approaches (Case study: Dalaki River, Iran)
Modeling of stream flow–suspended sediment relationship is one of the most studied topics in hydrology due to itsessential application to water resources management. Recently, artificial intelligence has gained much popularity owing toits application in calibrating the nonlinear relationships inherent in the stream flow–suspended sediment relationship. Thisstudy made us of adaptive neuro-fuzzy ...
متن کاملApplication of Artificial Neural Network and Fuzzy Inference System in Prediction of Breaking Wave Characteristics
Wave height as well as water depth at the breaking point are two basic parameters which are necessary for studying coastal processes. In this study, the application of soft computing-based methods such as artificial neural network (ANN), fuzzy inference system (FIS), adaptive neuro fuzzy inference system (ANFIS) and semi-empirical models for prediction of these parameters are investigated. Th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Eng. Appl. of AI
دوره 21 شماره
صفحات -
تاریخ انتشار 2008